Package: SBICgraph 1.0.0

SBICgraph: Structural Bayesian Information Criterion for Graphical Models

This is the implementation of the novel structural Bayesian information criterion by Zhou, 2020 (under review). In this method, the prior structure is modeled and incorporated into the Bayesian information criterion framework. Additionally, we also provide the implementation of a two-step algorithm to generate the candidate model pool.

Authors:Quang Nguyen [cre, aut], Jie Zhou [aut], Anne Hoen [aut], Jiang Gui [aut]

SBICgraph_1.0.0.tar.gz
SBICgraph_1.0.0.zip(r-4.5)SBICgraph_1.0.0.zip(r-4.4)SBICgraph_1.0.0.zip(r-4.3)
SBICgraph_1.0.0.tgz(r-4.4-any)SBICgraph_1.0.0.tgz(r-4.3-any)
SBICgraph_1.0.0.tar.gz(r-4.5-noble)SBICgraph_1.0.0.tar.gz(r-4.4-noble)
SBICgraph_1.0.0.tgz(r-4.4-emscripten)SBICgraph_1.0.0.tgz(r-4.3-emscripten)
SBICgraph.pdf |SBICgraph.html
SBICgraph/json (API)
NEWS

# Install 'SBICgraph' in R:
install.packages('SBICgraph', repos = c('https://qpmnguyen.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.70 score 3 scripts 100 downloads 6 exports 25 dependencies

Last updated 4 years agofrom:cc38c4238c. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 05 2024
R-4.5-winNOTENov 05 2024
R-4.5-linuxNOTENov 05 2024
R-4.4-winNOTENov 05 2024
R-4.4-macNOTENov 05 2024
R-4.3-winNOTENov 05 2024
R-4.3-macNOTENov 05 2024

Exports:comparisonmlemodelsetsbicsggmsimulate

Dependencies:clicodacodetoolsfansiforeachglmnetglueiteratorslatticelifecyclemagrittrMASSMatrixnetworkpillarpkgconfigRcppRcppEigenrlangshapestatnet.commonsurvivaltibbleutf8vctrs

Overview of using SBIC for network models

Rendered fromoverview.Rmdusingknitr::rmarkdownon Nov 05 2024.

Last update: 2021-03-02
Started: 2021-03-02